

CAS Lib

CAS Lib, a standard PHP library for CAS authentication [https://en.wikipedia.org/wiki/Central_Authentication_Service].

The Central Authentication Service (CAS) is an Open-Source single sign-on
protocol for the web.
Its purpose is to permit a user to access multiple applications while providing
their credentials only once.
It also allows web applications to authenticate users without gaining access to
a user’s security credentials,
such as a password. The name CAS also refers to a software package that
implements this protocol.

For improving the flexibility and in order to maximize it, it is able to
authenticate users and leaves the session handling up to the developer.

In order to foster a greater adoption of this library, it has been built
with interoperability in mind. It only uses PHP Standards
Recommendations [https://www.php-fig.org/] interfaces.

	PSR-4 [https://www.php-fig.org/psr/psr-4/] for classes autoloading,

	PSR-6 [https://www.php-fig.org/psr/psr-6/] for caching,

	PSR-7 [https://www.php-fig.org/psr/psr-7/] for HTTP messages (requests, responses),

	PSR-12 [https://www.php-fig.org/psr/psr-12/] for coding standards,

	PSR-15 [https://www.php-fig.org/psr/psr-15/] for HTTP Server Request Handlers,

	PSR-17 [https://www.php-fig.org/psr/psr-17/] for HTTP messages factories,

	PSR-18 [https://www.php-fig.org/psr/psr-18/] for HTTP client.

Therefore, this library is framework agnostic and can be integrated in
any PHP project, with any framework.

Requirements

PHP

PHP >= 7.4 is required for this library.

PHP Extensions

	json

	libxml

	simplexml

Packages

In order to get the CAS Lib library running, you will require some dependencies.

To give a maximum freedom to the users using CAS Lib, each required dependencies is a well defined standardized PHP
class.

	Dependency

	PSR

	Implementations

	Example package

	Cache

	PSR-6 [https://www.php-fig.org/psr/psr-6/]

	cache-implementation [https://packagist.org/providers/psr/cache-implementation]

	symfony/cache [https://packagist.org/packages/symfony/cache]

	HTTP Message

	PSR-7 [https://www.php-fig.org/psr/psr-7/]

	http-message-implementations [https://packagist.org/providers/psr/http-message-implementation]

	nyholm/psr7 [https://packagist.org/packages/nyholm/psr7]

	HTTP Factory

	PSR-17 [https://www.php-fig.org/psr/psr-17/]

	http-factory-implementations [https://packagist.org/providers/psr/http-factory-implementation]

	loophp/psr17 [https://packagist.org/packages/loophp/psr17]

	HTTP Client

	PSR-18 [https://www.php-fig.org/psr/psr-18/]

	http-client-implementations [https://packagist.org/providers/psr/http-client-implementation]

	symfony/http-client [https://packagist.org/packages/symfony/http-client]

You are free to use any package you want, as long as they are implementing the proper requirement.

CAS Lib only returns standardized HTTP responses, you will need to emit the response back to the client.

You may use custom code for that, but you can also use any of the following packages for this

	zendframework/zend-httphandlerrunner [https://packagist.org/packages/zendframework/zend-httphandlerrunner]

	http-interop/response-sender [https://packagist.org/packages/http-interop/response-sender]

Installation

The easiest way to install it is through Composer [https://getcomposer.org]

composer require ecphp/cas-lib

Based on the context this package is used, you might also need to install
a package which provides PSR7 implementations [https://www.php-fig.org/psr/psr-7/].

There are many packages implementing PSR7 [https://packagist.org/providers/psr/http-message-implementation], you can pick the one you prefer,
exemple:

composer require nyholm/psr7

Next, you’ll need an implementation of PSR17 [https://www.php-fig.org/psr/psr-17/]. PSR17 provides the required
factories for the HTTP protocol. In order to facilitate the customizations,
you can either implements your own PSR17 implementation or use loophp/psr17 [https://github.com/loophp/psr17]
which provides a default one:

composer require loophp/psr17

Configuration

base_url: https://casserver.herokuapp.com/cas
protocol:
 login:
 path: /login
 default_parameters:
 foo: bar
 serviceValidate:
 path: /p3/serviceValidate
 default_parameters:
 pgtUrl: https://my-app/casProxyCallback
 logout:
 path: /logout
 default_parameters:
 service: https://my-app/homepage
 proxy:
 path: /proxy
 default_parameters:
 foo: bar
 proxyValidate:
 path: /proxyValidate
 default_parameters:
 pgtUrl: https://my-app/casProxyCallback

Usage

Apereo [https://www.apereo.org/] already provides a demo CAS server without no proxy authentication
mechanism enabled.

In order to test the libraries here, I’ve setup another
CAS server with Proxy authentication enabled [https://heroku-cas-server.herokuapp.com/cas/login] this time.

Feel free to use it for your tests.

Warning

If your client application is not hosted on a public server and in
HTTPS, this won’t work.

Tip

See more on the page Development. if you want to have your own
local CAS server.

The test login is casuser, password is: Mellon

Bare PHP

To get you started with CAS Lib in a simple bare PHP project (without
using any framework), you can check the following project: drupol/psrcas-client-poc [https://github.com/drupol/psrcas-client-poc/]

Test the bare PHP demo application [https://psrcas-php-demo.herokuapp.com/] now.

Symfony

The CAS Lib library can be used in a Symfony project through the package ecphp/cas-bundle [https://github.com/ecphp/cas-bundle]

Test the Symfony demo application [https://cas-bundle-demo.herokuapp.com/] now.

See the documentation of the ecphp/cas-bundle [http://github.com/ecphp/cas-bundle] for more information.

Tests, code quality and code style

Every time changes are introduced into the library, the continuous integration
system run and validate the tests.

A PHP quality tool, Grumphp [https://github.com/phpro/grumphp], is used to orchestrate all these tasks at each
commit on the local machine, but also on the continuous integration tool in use.

To run the tests locally:

composer grumphp

Contributing

See the file CONTRIBUTING.md but feel free to contribute to this
library by sending Github pull requests.

Development

In order to test efficiently, is to test the library against a real CAS server.

If you’re not able to use one, the best is to work with a local CAS server.

If you want to setup your own local CAS server in less than 2 minutes,
use the repo crpeck/cas-overlay-docker [https://github.com/crpeck/cas-overlay-docker] and you’ll have something working
really quickly.

Don’t forget to setup the HTTPS certificates because the communication between
the CAS server and your application MUST be in HTTPS, and I haven’t found a way
yet to disable this for testing purposes.

If you prefer to use your local machine, there are already some documentation on Github [https://apereo.github.io/cas/developer/Build-Process.html].

Maintainers

See the MAINTAINERS.txt [https://github.com/ecphp/cas-lib/blob/master/MAINTAINERS.txt] file.

Contributors

See the Github insights page [https://github.com/ecphp/cas-lib/graphs/contributors].

Index

 _static/minus.png

_static/file.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/down-pressed.png

_static/comment-close.png

_static/comment.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 CAS Lib

_static/comment-bright.png

_static/ajax-loader.gif

